SISTEMA SANITARIO REGIONALE

Istituto Nazionale per le Malattie Infettive *"Lazzaro Spallanzani"*

Istituto di Ricovero e Cura a Carattere Scientifico

L'intervento terapeutico nelle varie fasi di malattia: la evidenza scientifica

ovvero clinical management of patients with COVID-19 ovvero no one is safe until we are all safe

Emanuele Nicastri

UOC Malattie Infettive ad Alta Intensità di Cure

BM MI Regione Lazio

INMI «L. Spallanzani» IRCCS

WHO Collaborating Center for clinical care, diagnosis, response and training on Highly Infectious Diseases

In 1918, barriers were erected around soldiers' beds at a naval station in San Francisco to slow the spread of flu. U.S. NAVAL HISTORY AND HERITAGE COMMAND PHOTOGRAPH

Epidemics are a natural part of life, predictable in occurrence.

The sequential arrival of HIV, SARS, H1N1 influenza, MERS, and now Covid-19 highlights the ineluctable march of zoonoses since the 1980s. Although some may label the latest as a "Black Swan," a totally unpredictable occurrence with threatening consequences], the only uncertainties about epidemics are when and how severe.

Morens & Fauci Cell 11.2020

The New York Times

NEW YORK, TUESDAY, SEPTEMBER 28, 2021 © 2021 The New York Times Company

DAVID

LEONHARDT

THE

can voters.

ica.

even starker.

MORNING

The New York Times del 28 settembre 2021

1. Andamento della copertura vaccinale per SARS-CoV-2 negli stati USA a seconda dei voti repubblicani nella ultima elezioen presidenziali da <40% in blue a >60% in rosso

2. Incidenza giornaliera di decessi per COVID per 1000 residenti per gli stati USA elettori di Trump, in blue, vs stati elettori di Biden in rosso

	Symptoms	Epi and clinical check	Treatment	Isolation	Setting/surveillance
Pauci / asymptomatic with no evidence of pneumonia	Fever cough Anosmya Congiuntivitis Cefalea Astenya Mild dhyarrea	Anamnesis Vital parameters: PA/FC ≥95% basal O2 level and negative 6 minute Walking Test (6MWT)	Paracetamol/FANS Pronation, Monoclonal Ab if at risk, intranasal or areosol CS	Home Isolation residence	Strict daily phone monitoring with O2 check by saturimetry& 6MWT Home check with thorax US Home hemo assay(?)
	Symptoms	Epi and clinical check	Treatment	Isolation	Setting/surveillance
Symptomatic with pneumonia evidence	 > 70 yo Fever > 37,5° Prolonged cough Respiratory sympt Comorbidities 	Anamnesis, Vital parameters: MEWS basal O2 level & 6MWT If at ER Arterial Blood gas (ABG): P/F ratio > 300	Oxygen Venturi Mask (?) Paracetamol/FANS Systemic Steroids Pronation baricitinib/anakinra/Ab II6	≥95% basal O2 & negative 6MWT & ABG, MEWS <u><</u> 1: discharge at home or residence	Strict daily phone monitoring with O2 check by saturimetry& 6MWT Home check with thorax US Home hemo assay(?)
		Inflammatory index (CRP, d- Dimer, ferritin, Hb, WBC, Lympho, plt) Chest XR, US, CT Scan	Monoclonal Ab if S seronegative LMWP if low mobility	≤95% basal O2 or positive 6MWT or ABG, MEWS ≥1: Admission	Basal O2, 6MWT & ABG Imaging Hemo assay
	Symptoms	Epi and clinical check	Treatment	Isolation	Setting/surveillance
ARDS	> 70 yo Fever > 38° Dyspnea Sepsis Comorbidities	Anamnesis ABG: P/F ratio < 300 Inflammatory index (CRP, d- Dimer, ferritin, Hb, WBC, Lympho, plt) Chest XR, US, CT Scan Non Invasive monitoring	HFOT/cPap/NIV with pronation; Remdesivi; Steroids, LMWH on prophyl/treament Ivermectin 200µ/kg/dayx2d if suspect Strongylo	COVID acute care, Semi ICU	Acute care setting with multidisciplinary HCWs Strict daily monitoring ABG Imaging Hemo assay
Clinically instable	Plus MODS Septic shock	Plus Invasive monitoring	VM with pronation Steroids LMWH terapeutics Plasma if RCT Ivermectin as above	Semi ICU ICU	

POSIZIONE PRONA DA SVEGLI

• COME SAPRA', I SUOI LIVELLI DI OSSIGENO SONO BASSI A CAUSA DELLE SUE ATTUALI CONDIZIONI CLINICHE

- MENTRE IL SUO TEAM DI MEDICI ED INFERMIERI STA LAVORANDO PER TRATTARE IL PROBLEMA, PUO' AIUTARE A MIGLIORARE I SUOI LIVELLI DI OSSIGENO CON DETERMINATI CAMBIAMENTI DI POSIZIONE
- SE POSSIBILE, CERCHI DI NON PASSARE MOLTO TEMPO SDRAIATO SULLA SCHIENA
- CERCHI DI SDRAIARSI A PANCIA IN GIÙ 2-3 VOLTE AL GIORNO (DA 30 MIN A QUALCHE ORA ALLA VOLTA SE POSSIBILE)
- STARE A PANCIA IN GIÙ (POSIZIONE PRONA) LA AIUTERÀ A FAR ENTRARE PIÙ ARIA NEI SUOI POLMONI E MIGLIORERA' I LIVELLI DI OSSIGENO
- SE NON L'HAI MAI PROVATO PRIMA, ALL'INIZIO LE POTREBBE SEMBRARE UN PO' SCOMODO. IL PERSONALE SANITARIO LA AIUTERA' A METTERSI IN UNA POSIZIONE COMODA
- ANCHE STARE SEDUTI È MEGLIO CHE SDRAIARSI SULLA SCHIENA (POSIZIONE SUPINA)
- SE NON RIESCE A METTERSI IN QUELLA POSIZIONE, VA BENE LO STESSO. IL SUO TEAM DI MEDICI ED INFERMIERI FARA' COMUNQUE IL POSSIBILE PER MIGLIORARE LA SUA CONDIZIONE.

AWAKE PRONE POSITIONING (APP)

- AS YOU ARE AWARE, YOUR OXYGEN LEVELS ARE LOW BECAUSE OF YOUR CURRENT MEDICAL CONDITION
- WHILE YOUR MEDICAL TEAM IS WORKING ON TREATING THE PROBLEM, YOU CAN HELP IMPROVE YOUR OXYGEN LEVELS WITH CERTAIN POSITION CHANGES
- IF POSSIBLE, TRY TO NOT SPEND A LOT OF TIME LYING FLAT ON YOUR BACK

Less Time

Like This

- TRY TO LIE ON YOUR STOMACH 2-3 TIMES PER DAY (30 MIN-FEW HOURS AT A TIME IF POSSIBLE)
- LAYING ON YOUR STOMACH (PRONE POSITION) WILL HELP TO GET MORE AIR INTO YOUR LUNGS, AND IMPROVE YOUR OXYGEN LEVELS
- IT MAY FEEL A BIT UNCOMFORTABLE AT FIRST, IF YOU HAVE NOT TRIED IT BEFORE. ASK YOUR NURSE FOR ASSISTANCE IF NEEDED, TO HELP YOU GET INTO A COMFORTABLE POSITION.
 - EVEN SITTING UP IS BETTER THAN LAYING ON YOUR BACK (SUPINE POSITION)
- IF YOU ARE UNABLE TO GET INTO THAT POSITION, IT'S ALRIGHT. YOUR MEDICAL TEAM WILL KEEP WORKING ON OTHER STRATEGIES TO IMPROVE YOUR CONDITION.

Prolonged prone position ventilation for SARS-CoV-2 patients is feasible and effective

Carsetti *et al. Critical Care* (2020) 24:225 https://doi.org/10.1186/s13054-020-02956-w

Fig. 1 PaO_2/FiO_2 comparison between standard and prolonged prone position ventilation. *Standard pronation: T1 vs. T0, p = 0.01; **standard pronation: T2 vs. T1, p = 0.016; *prolonged pronation: T1 vs. T0, p < 0.001; **prolonged pronation: T2 vs. T0, p = 0.034

Home based treatment

SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19

SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19

Table 2 Change from Baseline in Viral Load

Table 3. Hospitalization.*					
Key Secondary Outcome	LY-CoV555	Placebo	Incidence		
	no. of patients/to	otal no.	%		
Hospitalization		9/143	6.3		
	700 mg, 1/101		1.0		
	2800 mg, 2/107		1.9		
	7000 mg, 2/101		2.0		
	Pooled doses, 5/309		1.6		

Table 1. Change non Basenne in that Loud.			
Variable	LY-CoV555 (N=309)	Placebo (N=143)	Difference (95% CI)
Primary outcome			
Mean change from baseline in viral load at day 11		-3.47	
	700 mg, -3.67		-0.20 (-0.66 to 0.25)
	2800 mg, -4.00		-0.53 (-0.98 to -0.08)
	7000 mg, -3.38		0.09 (-0.37 to 0.55)
	Pooled doses, -3.70		-0.22 (-0.60 to 0.15)
Secondary outcomes*			
Mean change from baseline in viral load at day 3		-0.85	
	700 mg, -1.27		-0.42 (-0.89 to 0.06)
	2800 mg, -1.50		-0.64 (-1.11 to -0.17)
	7000 mg, -1.27		-0.42 (-0.90 to 0.06)
	Pooled doses, -1.35		-0.49 (-0.87 to -0.11)
Mean change from baseline in viral load at day 7		-2.56	
	700 mg, -2.82		-0.25 (-0.73 to 0.23)
	2800 mg, -3.01		-0.45 (-0.92 to 0.03)
	7000 mg, -2.85		-0.28 (-0.77 to 0.20)
	Pooled doses, -2.90		-0.33 (-0.72 to 0.06)

This article was published on October 28, 2020, at NEJM.org.

Effect of Bamlanivimab as Monotherapy or in Combination With Etesevimab on Viral Load in Patients With Mild to Moderate COVID-19 A Randomized Clinical Trial

Change in Log Viral Load and in Viral Load Cycle Threshold Over Time With Bamlanivimab Monotherapy and Bamlanivimab and Etesevimab Combination Therapy

JAMA. doi:10.1001/jama.2021.0202 Published online January 21, 2021.

Public Health Emergency

Public Health and Medical Emergency Support for a Nation Prepared

PHE Home > Emergency > Events > 2019 Novel Coronavirus > ASPR's Portfolio of COVID-19 MCMs > bamlanivimab-etesevimab > Pause in the Distribution of bamlanivimab/etesevimab

Pause in the Distribution of bamlanivimab/etesevimab

June 25, 2021

The Assistant Secretary for Preparedness and Response (ASPR) and the Food and Drug Administration (FDA) within the U.S. Department of Health and Human Services are committed to ensuring timely and transparent communication regarding the COVID-19 monoclonal antibody treatments currently authorized for emergency use in certain patients with COVID-19.

Today, we are informing you that ASPR is immediately pausing all distribution of bamlanivimab and etesevimab together and etesevimab alone (to pair with existing supply of bamlanivimab at a facility for use under EUA 094) on a national basis until further notice. In addition, FDA recommends that health care providers nationwide use alternative authorized monoclonal antibody therapies, as described below, and not use bamlanivimab and etesevimab administered together at this time.

The Centers for Disease Control and Prevention (CDC) has identified that the combined frequencies of the SARS-CoV-2 P.1/Gamma variant (first identified in Brazil) and the B.1.351/Beta variant (first identified in South Africa) throughout the United States now exceed 11% and are trending upward (https://www.cdc.gov/coronavirus/2019-ncov/cases-updates /variant-proportions.html). Results from in vitro assays that are used to assess the susceptibility of viral variants to particular monoclonal antibodies suggest that bamlanivimab and etesevimab administered together are not active against either the P.1 or B.1.351 variants. These assays use "pseudotyped virus-like particles" that help determine likely susceptibility of the live SARS-CoV-2 variant viruses.

Re	lated Resources
) ¢	asirivimab/
i	ndevimab
►B	amlanivimab/
е	tesevimab
) s	PEED: Special Projects for
E	quitable and Efficient
E	istribution of COVID-19
C	Outpatient Therapeutics
►L	ocating Sites for COVID-19
A	ntibody Treatments

Search ...

Q

FACT SHEET FOR HEALTH CARE PROVIDERS EMERGENCY USE AUTHORIZATION (EUA) OF BAMLANIVIMAB AND ETESEVIMAB

Limitations of Authorized Use

(September 2, updated September 16, 2021)

Combined Frequency of Variants Resistant to Bamlanivimab and Etesevimab

- Bamlanivimab and etesevimab are not authorized for use in states, territories, and US jurisdictions in which the combined frequency of variants resistant to bamlanivimab and etesevimab exceeds 5%.¹
 - A list of states, territories, and US jurisdictions in which bamlanivimab and etesevimab are and are not currently authorized is available on the following FDA website: <u>https://www.fda.gov/media/151719/download</u> (On

(On October 9 only Hawai are not authorized

POST-EXPOSURE PROPHYLAXIS

The U.S. Food and Drug Administration (FDA) has issued an Emergency Use Authorization (EUA) to permit the emergency use of the unapproved products bamlanivimab and etesevimab administered together in adults and pediatric individuals (12 years of age and older weighing at least 40 kg) for post-exposure prophylaxis of COVID-19 in individuals who are at high risk of progression to severe COVID-19, including hospitalization or death, and are:

- not fully vaccinated¹ or who are not expected to mount an adequate immune response to complete SARS-CoV-2 vaccination (for example, individuals with immunocompromising conditions including those taking immunosuppressive medications²) and
 - have been exposed to an individual infected with SARS-CoV-2 consistent with close contact criteria per Centers for Disease Control and Prevention (CDC)³ or
 - who are at high risk of exposure to an individual infected with SARS-CoV-2 because of occurrence of SARS-CoV-2 infection in other individuals in the same institutional setting (for example, nursing homes, prisons) [see

REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19

A Viral Load over Time in the Overall Population

This article was published on December 17, 2020, and updated on December 18, 2020, at NEJM.org.

REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19

C Viral Load over Time According to Baseline Viral Load Category

This article was published on December 17, 2020, and updated on December 18, 2020, at NEJM.org.

REGEN-COV Antibody Combination and Outcomes in Outpatients with Covid-19

This article was published on September 29, 2021, at NEJM.org.

REGEN-COV Antibody Combination and Outcomes in Outpatients with Covid-19

B Covid-19–Related Hospitalization or Death from Any Cause — Combined Phase 3 Trial

Placebo

November 8, 2021 at 7:00 AM EST

NEW PHASE 3 ANALYSES SHOW THAT A SINGLE DOSE OF REGEN-COV® (CASIRIVIMAB AND IMDEVIMAB) PROVIDES LONG-TERM PROTECTION AGAINST COVID-19

TARRYTOWN, N.Y., Nov. 8, 2021 / PRNewswire / --

Single dose of REGEN-COV (1,200 mg subcutaneous) reduced the risk of COVID-19 by 81.6% during the prespecified follow-up period (months 2-8), maintaining the 81.4% risk reduction previously reported during month 1

During the 8-month assessment period there were 0 hospitalizations for COVID-19 in the REGEN-COV group and 6 in the placebo group

The fully human antibodies in REGEN-COV were developed to provide long-lasting protective effects without any artificial mutations or sequences

Product Information as approved by the CHMP on 11 November 2021, pending endorsement by the European Commission

Treatment

The dosage in adult patients and in adolescent patients 12 years of age and older weighing at least 40 kg is 600 mg of casirivimab and 600 mg of imdevimab administered as a single intravenous infusion or by subcutaneous injection (see Table 1). See sections 4.4 and 5.1. Casirivimab with imdevimab should be given within 7 days of the onset of symptoms of COVID-19.

Prevention

Post-exposure prophylaxis

The dosage in adult patients and in adolescent patients 12 years of age and older weighing at least 40 kg is 600 mg of casirivimab and 600 mg of imdevimab administered as a single intravenous infusion or by subcutaneous injection (see Tables 1 and 2).

Casirivimab with imdevimab should be given as soon as possible after contact with a case of COVID-19.

Pre-exposure prophylaxis

The initial dose in adult patients and in adolescent patients 12 years of age and older weighing at least 40 kg is 600 mg of casirivimab and 600 mg of imdevimab administered as a single intravenous infusion or by subcutaneous injection (see Tables 1 and 2). Subsequent doses of 300 mg of casirivimab and 300 mg of imdevimab administered as a single intravenous infusion or by subcutaneous injection may be given every 4 weeks until prophylaxis is no longer required. There are no data on repeat dosing beyond 24 weeks (6 doses).

Early Treatment for Covid-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab

Table 2. Efficacy Outcomes through Day 29 (Intention-to-Treat Population).*						
Outcome	Sotrovimab (N = 291)	Placebo (N = 292)				
Primary outcome						
Hospitalization for >24 hr for any cause or death from any cause — no. (%)	3 (1)	21 (7)				
Hospitalization for >24 hr for any cause	3 (1)	21 (7)				
Death from any cause	0	l (<1)†				
Alive and not hospitalized — no. (%)	284 (98)	270 (92)				
Data missing — no. (%)						
All patients with missing data	4 (1)	l (<1)				
Patients with missing data because of withdrawal of consent before re- ceipt of sotrovimab or placebo	3 (1)	l (<1)				
Relative risk reduction (97.24% CI)	85 (44–96)	_				
P value	0.002	_				

AZD7442 PROVENT Phase III prophylaxis trial met primary endpoint in preventing COVID-19 Article

Potently neutralizing and protective human antibodies against SARS-CoV-2

Nature | Vol 584 | 20 August 2020 | 447

- PROVENT is a Phase III RCT assessing safety and efficacy of 300mg AZD7442 (combination of 2 long-acting antibodies, tixagevimab and cilgavimab, discovered by Vanderbilt UMC, Nashville and licensed to AZ in 06/20) compared to placebo for the prevention of COVID-19.
- The trial was conducted in US, UK, Spain, France and Belgium. 5,197 participants were randomised in a 2:1 ratio to receive AZD7442 (3460) or placebo (1,737), administered in two IM injections.
- The primary efficacy endpoint was the first COVID case occurring post dose prior to day 183. Participants were adults who would benefit as having increased risk for inadequate response to active immunisation or having increased risk for SARS-CoV-2 infection
- August 20, 2021, press media release: AZD7442 reduced the risk of developing symptomatic COVID-19 by 77%. No severe COVID-19 or COVID-19-deaths in AZD7442 treated. In placebo arm, 3 severe COVID-19 cases, including 2 deaths.
- October 5, 2021 AZ submitted a FDA request for EUA for AZD7442 for prophylaxis of symptomatic COVID-19

Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial

 > 4000 patients were randomly assigned to receive oral colchicine
 (0.5 mg twice per day for 3 days and then once per day for 27 days) or placebo

	Colchicine (n=2075)	Placebo (n=2084)	Odds ratio (95% CI)	p value
Primary composite endpoint	96 (4-6%)	126 (6.0%)	0.75 (0.57-0.99)	0.042
Components of primary endpoint				
Death	5 (0.2%)	9 (0.4%)	0.56 (0.19–1.66)	
Hospitalisation for COVID-19	93 (4·5%)	123 (5.9%)	0.75 (0.57-0.99)	
Secondary endpoint mechanical ventilation	10 (0.5%)	20 (1.0%)	0.50 (0.23-1.07)	

Data are n (%). Evaluation of the primary endpoint in the subgroup of patients with PCR-confirmed COVID-19 was prespecified and that of components of the primary endpoint and the secondary endpoints were done as post-hoc analyses.

Table 3: Rates and odds ratios for major clinical outcomes in the subgroup of patients with PCR-confirmed COVID-19 in the intent-to-treat population

ANTIVIRAL THERAPEUTICS

Molnupiravir: coding for catastrophe

- Molnupiravir was invented at Drug Innovations at Emory (DRIVE), LLC, a not-for-profit biotechnology company owned by Emory University, and is being developed by Merck & Co., Inc. with Ridgeback Biotherapeutics
- Molnupiravir (MK-4482, EIDD-2801) is a candidate antiviral that targets the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), inhibits viral propagation through <u>lethal mutagenesis</u> by introducing errors in the viral genome, has a pan-coronaviral inhibitory profile, fails to induce viral-resistance mutations.
- Molnupiravir-induced lethal mutagenesis is minimally a two-step mechanism characterized by a relatively high selectivity of MTP for incorporation as a CTP analog and the indiscriminate incorporation of either ATP (mutagenesis) or GTP when MNP is localized in the templating strand.
- The erroneously incorporated AMP can subsequently template UTP incorporation, generating downstream C-to-U mutations. The accumulation of mutations pushes viral replication over the 'error threshold' that demarcates the replication fidelity required for viability.
- This mechanism distinguishes molnupiravir from remdesivir, which impedes the progression of viral RdRp, and provides insights into alternative mechanisms of RdRp inhibition. Finally, molnupiravir possesses excellent pharmacokinetic properties, which include oral administration

Morgan Stanley Emerging Mkt Debt

Molnupiravir: coding for catastrophe

NATURE STRUCTURAL & MOLECULAR BIOLOGY | VOL 28 | SEPTEMBER 2021 | 706-711 | www.nature.com/nsmb

Oral prodrug of remdesivir parent GS-441524 is efficacious against SARS-CoV-2 in ferrets

Oral GS-621763 is efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity.

Twice-daily oral administration of 10 mg/kg GS-621763 reduces SARS-CoV-2 burden to near-undetectable levels in ferrets.

When dosed therapeutically against VOC P.1 gamma γ , oral GS-621763 blocks virus replication and prevents transmission to untreated contact animals.

Cox Nat Com Nov 8, 2021

PFIZER'S NOVEL COVID-19 ORAL ANTIVIRAL TREATMENT CANDIDATE REDUCED RISK OF HOSPITALIZATION OR DEATH BY 89% IN INTERIM ANALYSIS OF PHASE 2/3 EPIC-HR STUDY

Friday, November 05, 2021 - 06:45am

- Interim analysis of the Phase 2/3 EPIC-HR (Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients) randomized, double-blind study of 1219 non-hospitalized adults with COVID-19, at high risk of clinical progression treated with PAXLOVID (PF-07321332 plus ritonavir), an oral SARS-CoV-2-3CL protease inhibitor
- The scheduled interim analysis showed an 89% reduction in risk of COVID-19-related hospitalization or death from any cause compared to placebo in patients treated within three days of symptom onset (primary endpoint); 0.8% of patients who received PAXLOVID were hospitalized through day 28 following randomization (3/389 hospitalized with no deaths), compared to 7.0% of patients who received placebo and were hospitalized or died (27/385 hospitalized with 7 subsequent deaths) (p<0.0001).
- Similar reductions in patients treated within five days of symptom onset; 1.0% of patients under PAXLOVID were hospitalized through day 28 (6/607 hospitalized, with no deaths), compared to 6.7% of patients who received a placebo (41/612 hospitalized with 10 subsequent deaths)(p<0.0001).
- In the overall study population through Day 28, no deaths were reported in patients who received PAXLOVID[™] as compared to 10 (1.6%) deaths in patients who received placebo..

JAMA | Original Investigation

Effect of Antithrombotic Therapy on Clinical Outcomes in Outpatients With Clinically Stable Symptomatic COVID-19 The ACTIV-4B Randomized Clinical Trial

Table 2. Suspected and Adjudicated Efficacy Outcomes and Hemorrhagic Events Within 45 Days of Drug Initiation Among Those Who Initiated Trial Therapy, Stratified by Assigned Treatment

	No. (%)					
Adjudicated outcomes ^d	Aspirin (81 mg once daily) (n = 144)	Apixaban (2.5 mg twice daily) (n = 135)	Apixaban (5 mg twice daily) (n = 143) ^a	Placebo (n = 136) ^a		
Composite primary end point	0	1 (0.7)	2 (1.4)	0		
Risk difference (in percentage points) vs placebo (95% CI)	0	0.7 (-2.1 to 4.1)	1.4 (-1.5 to 5.0)			
Components of primary end point						
Cardiopulmonary hospitalizations	0	1 (0.7)	2 (1.4)	0		
Deep vein thrombosis or pulmonary embolism	0	0	0	0		
Myocardial infarction, stroke or other arterial embolism	0	0	0	0		
Death	0	0	0	0		

A Cumulative incidence of adjudicated primary end point

Table 2. Suspected and Adjudicated Efficacy Outcomes and Hemorrhagic Events Within 45 Days of Drug Initiation Among Those Who Initiated Trial Therapy, Stratified by Assigned Treatment

	No. (%)				
Suspected hemorrhagic events	Aspirin (81 mg once daily) (n = 144)	Apixaban (2.5 mg twice daily) (n = 135)	Apixaban (5 mg twice daily) (n = 143) ^a	Placebo (n = 136)ª	
Any bleeding evente	6 (4.2)	9 (6.7)	13 (9.1)	3 (2.2)	
Risk difference (in percentage points) vs placebo (95% CI)	2.0 (-2.7 to 6.8)	4.5 (-0.7 to 10.2)	6.9 (1.4 to 12.9)		
Type of bleeding event					
Major bleeding	0	0	0	0	
Clinically relevant nonmajor bleeding	2 (1.4)	4 (3.0)	2 (1.4)	0	
Minor bleeding	4 (2.8)	5 (3.7)	11 (7.7)	3 (2.2)	
Adjudicated hemorrhagic events ^f					
Major bleeding	0	0	0	0	
Clinically relevant nonmajor bleeding	0	1 (0.7)	1 (0.7)	0	

B Cumulative incidence of any acute medical event

In-hospital treatment

Monoclonal Antibodies

REGENERON

September 14, 2020 at 7:00 AM EDT

RECOVERY COVID-19 PHASE 3 TRIAL TO EVALUATE REGENERON'S REGN-COV2 INVESTIGATIONAL ANTIBODY COCKTAIL IN THE UK

RECOVERY COVID-19 phase 3 trial to evaluate Regeneron's REGN-COV2 investigational antibody cocktail in the UK

14 September 2020

One of the world's largest efforts to find effective COVID-19 treatments will evaluate the impact of REGN-COV2 on mortality, hospital stays, and the need for ventilation.

The open-label RECOVERY trial will assess the impact of adding REGN-COV2 to the usual standard-of-care on all-cause mortality 28 days after randomization. Other endpoints include the impact on hospital stay and the need for ventilation. It is anticipated that at least 2,000 patients will be randomly allocated to receive REGN-COV2 plus usual standard-of-care, and results will be compared with at least 2,000 patients who receive standard-of-care on its own. Usual standard-of-care varies by local hospital.

Casirivimab and imdevimab in patients admitted to

hospital with COVID-19 (RECOVERY): a randomised,

Figure 2: Effect of allocation to REGEN-COV on 28-day mortality in: a) seronegative vs seropositive participants; and b) all participants

UNDER EMBARGO UNTIL 16 June 2021

2021.06.15.21258542

Study assessing viral load reduction and prevention of death or need for mechanical ventilation

Virology samples collected: Baseline (Day 1), Days 3, 5, 7, 9, 11, 13, 15, 22, and 29.

Patient population

- Hospitalized adult COVID-19 patients (N=1197)
- Symptom onset ≤10 days from randomization
- SARS-CoV-2 confirmed by antigen or molecular testing ≤72 hours from randomization (retest allowed)
- Hospitalized for ≤72 hours

Stratified

 Antiviral only (e.g. remdesivir) at baseline or not on any other COVID-19 treatments or on antiviral agents (e.g. corticosteroids) or on combination agents (e.g. remdesivir plus corticosteroids)

Country

All cause mortality in treated patients versus placebo

Number of subjects at risk

Seronegative placebo Seronegative combined dose Seropositive placebo Seropositive combined dose

 160
 159
 158
 157
 153
 151
 150
 147
 146
 144
 143
 140
 138
 137
 132
 132
 131
 129
 127
 126
 125
 124
 123
 121

 360
 358
 356
 353
 352
 348
 346
 343
 341
 338
 333
 331
 329
 325
 324
 324
 323
 320
 316
 314
 313
 312
 311
 310
 310
 308
 308

 201
 201
 201
 199
 197
 196
 195
 193
 192
 191
 191
 188
 187
 186
 185
 183
 179
 178
 177
 177
 175
 174
 174
 174
 174

 369
 367
 367
 364
 364
 362
 357
 353
 349
 347
 345
 342
 340
 339
 336
 336
 336
 335
 332
 329
 328
 327
 325
 324
 324
 324
 324
 3

Mylonakis ID Week 10..2¹/₄

Casirivimab and imdevimab treatment numerically improved

mortality and death or mechanical ventilation by Day 29⁺

	Casirivimab and imdevimab	Disselse	Relative risk	¢	Relative risk reduction	<i>P</i> -value
	combined doses.	Placebo	(95% CI)		(95% CI)	(nominal)
Death within 28 days			i			
Seronegative	24/360 (6.7%)	24/160 (15.0%)			55.6% (24.2%, 74%)	0.0032
Seropositive	26/369 (7.0%)	18/201 (9.0%)	·	I	21.3% (–40.0%, 55.8%)	0.3153
Sero-undetermined§	9/75 (12.0%)	3/32 (9.4%)		\longrightarrow	–28.0% (NA, 62.9%)	1.0000
mFAS	59/840 (7.3%)	45/393 (11.5%)	$\langle \rangle$		35.9% (7.3%, 55.7%)	0.0178
Discharge alive from hos	spital					
Seronegative	324/360 (90.0%)	130/160 (81.2%)	F=	4	-10.8% (-20.2%, -2%)	0.0072
Seropositive	323/369 (87.5%)	170/201 (85.6%)	F#-1		–2.3% (–9.6%, 4.5%)	0.3639
Sero-undetermined§	67/75 (89.3%)	28/32 (87.5%)		ł	–2.1 (–18.9%, 12.3%)	0.7487
mFAS	712/804 (88.8%)	330/393 (84.0%)	\diamond		-5.8% (-11.1%, -0.6%)	0.0184
Death or mechanical ver	ntilation					
Seronegative	37/360 (10.3%)	31/160 (19.4%)	F=		47.0% (17.7%, 65.8%)	0.0061
Seropositive	34/369 (9.2%)	23/201 (11.4%)	<u> </u>		19.5% (–32.8%, 51.2%)	0.3010
Sero-undetermined§	11/75 (14.7%)	4/32 (12.5%)		\rightarrow	–17.3% (NA, 59.6%)	1.0000
mFAS	82/804 (10.2%)	58/393 (14.8%)			30.9% (5.4%, 49.5%)	0.0212
			0.1 0.4 0.6 0.8 1.0 1.	.2 1.4 1.6 1.8 2.0		
		Outcon casirivir	ne <mark>less</mark> likely with mab and imdevimab	Outcome more casirivimab and	e likely with imdevimab	

In seronegative patients, there was a 55.6% RRR of mortality by Day 29 and a 47.0% RRR in the proportion of patients who died or went on mechanical ventilation

Product Information as approved by the CHMP on 11 November 2021, pending endorsement by the European Commission

Treatment

The dosage in adult patients and in adolescent patients 12 years of age and older weighing at least 40 kg is 600 mg of casirivimab and 600 mg of imdevimab administered as a single intravenous infusion or by subcutaneous injection (see Table 1). See sections 4.4 and 5.1. Casirivimab with imdevimab should be given within 7 days of the onset of symptoms of COVID-19.

Prevention

Post-exposure prophylaxis

The dosage in adult patients and in adolescent patients 12 years of age and older weighing at least 40 kg is 600 mg of casirivimab and 600 mg of imdevimab administered as a single intravenous infusion or by subcutaneous injection (see Tables 1 and 2).

Casirivimab with imdevimab should be given as soon as possible after contact with a case of COVID-19.

Pre-exposure prophylaxis

The initial dose in adult patients and in adolescent patients 12 years of age and older weighing at least 40 kg is 600 mg of casirivimab and 600 mg of imdevimab administered as a single intravenous infusion or by subcutaneous injection (see Tables 1 and 2). Subsequent doses of 300 mg of casirivimab and 300 mg of imdevimab administered as a single intravenous infusion or by subcutaneous injection may be given every 4 weeks until prophylaxis is no longer required. There are no data on repeat dosing beyond 24 weeks (6 doses).
Remdesevir for Covid 19

Remdesivir for the Treatment of Covid-19 — Final Report

J.H. Beigel, K.M. Tomashek, L.E. Dodd, A.K. Mehta, B.S. Zingman, A.C. Kalil,

- Preliminary RCT data on 1062 patients began on February 21, the <u>Adaptive COVID-19</u> <u>Treatment Trial</u> - ACTT, sponsored by NIH.
- Remdesivir was better than placebo, primary endpoint: time to recovery.
- Patients on remdesivir had a 29% faster time to recovery than those who received placebo (p<0.001). Specifically, the median time to recovery was 10 days for patients treated with remdesivir compared with 15 days for those who received placebo.
- Results also suggested a survival benefit, with a mortality rate of 6.7% for the group receiving remdesivir versus 11.9% for the placebo group on day 15 and 11.4% versus 15.2 on day 29 (HR 0.73, CI 0.52-1.03).

Repurposed Antiviral Drugs for Covid-19 — Interim WHO Solidarity Trial Results

December 2, 2020, at NEJM.org

WHO Solidarity Trial Consortium*

A Remdesivir vs. Its Control

Remdesivir Control	2743 2708	2159 2138		2029 2004	1918 1908		1838 1833	
No. Who Died								
Remdesivir	1	29	90		48	18	16	
Control	1	26	93		43	27	14	

Subgroup	Remdesivir	Control	No. of Remdes	Deaths in sivir Group	Rate Ratio for Death (99% CI; 95% CI for tot	als)
			Value	Variance		
no	. of deaths reporte	d/no. of patients (%))			
Solidarity (stratified according to oxygen use and ventilation)						
No supplemental oxygen	11/661 (2.0)	13/664 (2.1)	-0.6	6.0		0.90 (0.31-2.58
Low-flow or high-flow oxygen	192/1828 (12.2)	219/1811 (13.8)	-16.9	101.8		0.85 (0.66–1.09
Ventilation	98/254 (43.0)	71/233 (37.8)	7.6	40.8		1.20 (0.80-1.80
Stratified total: Solidarity	301/2743 (12.5)	303/2708 (12.7)	-10.0	148.6	\Leftrightarrow	0.94 (0.80-1.10
ACTT-1 (stratified according to 4 ordinal score levels)						
No supplemental oxygen	3/75 (4.1)	3/63 (4.8)	-0.3	1.5 —		→ 0.82 (0.10-6.61)
Low-flow oxygen	9/232 (4.0)	25/203 (12.7)	-8.0	6.7 —	•	0.30 (0.11-0.81
High-flow oxygen or noninvasive ventilation	19/95 (21.2)	20/98 (20.4)	0.2	9.6		1.02 (0.44-2.34
Invasive ventilation	28/131 (21.9)	29/154 (19.3)	1.8	14.3		1.13 (0.57-2.23
Stratified total: ACTT-1	59/533 (11.1)	77/518 (14.9)	-6.4	32.1	$\langle \rangle$	0.82 (0.58-1.16
Trials with few deaths (and randomization ratio of 2:1)						
Wuhan: low-flow oxygen	11/129 (8.5)	(7/68)×2 (10.3)	-0.8	3.7 -	0	— 0.81 (0.21-3.07
Wuhan: high-flow oxygen or ventilatior	11/29 (37.9)	(3/10)×2 (30.0)	0.6	1.8 -		→ 1.40 (0.20-9.52
International: no supplemental oxygen	5/384 (1.3)	(4/200)×2 (2.0)	-0.9	2.0 —		→ 0.64 (0.10-3.94
Stratified total: 2:1 trials	27/542 (5.0)	(14/278)×2 (5.0)	-1.1	7.5		0.86 (0.42-1.77
Risk groups (calculated by summation of relevant strata)						
Lower risk: strata with no ventilation	231/3309 (7.0)	282/3277 (8.6)	-27.6	121.6		0.80 (0.63–1.01
Higher risk	156/509 (30.6)	126/505 (25.0)	10.1	66.5	÷ 	1.16 (0.85–1.60
Stratified total	387/3818 (10.1)	408/3782 (10.8)	-17.5	188.1	\diamond	0.91 (0.79–1.05
Heterogeneity between trials (Solidarity v	s. ACTT-1 vs. 2:1	trials): $\chi^2_2=0.5$				P=0.20
				0.0		3.0
				0.0	0.5 1.0 1.5 2.0 2.5	5.0

Observed-Expected

Remdesivir Better

Control Better

7. RECOMMENDATIONS FOR THERAPEUTICS

7.1 Remdesivir

Hospitalized patients with COVID-19, regardless of disease severity

Conditional recommendation

We suggest against administering remdesivir in addition to standard care.

Evidence to decision

Benefits and harms

Possibly no benefit, or little difference, compared with usual care alone

"However, the low certainty evidence for these outcomes, especially mortality, does not prove that remdesivir is ineffective; rather, there is insufficient evidence to confirm that it does improve patient-important outcomes".

Guidelines	DISEASE SEVERITY	TREATMENT
	Mechanical ventilation or ECMO	REMD 10 days
IDSA	On supplemental oxygen (noninvasive ventilation)	REMD 5 days
	NOT supplemental oxygen	NOT REMD
	High-flow device, noninvasive ventilation, mechanical ventilation or ECMO	Cannot make a recommendation either for or against starting REMD
NIH	On supplemental oxygen	REMD 5 days
	NOT supplemental oxygen	NOT REMD
WHO	Regardless of disease severity	NOT REMD
	High-flow device, noninvasive ventilation, mechanical ventilation or ECMO	REMD 10 days
NHS	On supplemental oxygen	REMD 5 days
	NOT supplemental oxygen	NOT REMD
	High-flow device, noninvasive ventilation, mechanical ventilation or ECMO	NOT REMD
AIFA	On supplemental oxygen	REMD 5 days
	NOT supplemental oxygen	NOT REMD

Prevalence and Risk Factors of Thromboembolism among Patients With Coronavirus Disease-I 9: A Systematic Review and Meta-Analysis

Figure 2. Forest plot illustrating the pooled analysis of 19 studies reporting thrombotic events in patients with COVID-19.

Figure 3. Subgroup analysis of thrombotic event by patient characteristics.

This article is protected by copyright. All rights reserved

Anticoagulation, Mortality, Bleeding and Pathology Among Patients Hospitalized with COVID-19: A Single Health System Study

Nadkerni, data from 4,389 pts at Mount Sinai NY JACC 9.2020

Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with Covid-19

The ATTACC, ACTIV-4a, and REMAP-CAP Investigators*

Table 3. Secondary Outcomes among All Patients with Moderate Disease.*

Outcome	Therapeutic-Dose Anticoagulation	Usual-Care Thromboprophylaxis	Adjusted Difference in Risk (95% Credible Interval)†	Adjusted Odds Ratio (95% Credible Interval);	Probability of Effect of Therapeutic-Dose Anticoagulation
	no. of patient	s/total no. (%)	percentage points		%
Survival until hospital dis- charge	1085/1171 (92.7)	962/1048 (91.8)	1.3 (-1.1 to 3.2)	1.21 (0.87 to 1.68)∬	87.1¶
Survival without organ support at 28 days∥	932/1175 (79.3)	789/1046 (75.4)	4.5 (0.9 to 7.7)	1.30 (1.05 to 1.61)	99.1¶
Progression to intubation or death**	129/1181 (10.9)	127/1050 (12.1)	-1.9 (-4.1 to 0.7)	0.82 (0.63 to 1.07)	92.2¶
Major thrombotic event or death	94/1180 (8.0)	104/1046 (9.9)	-2.6 (-4.4 to -0.2)	0.72 (0.53 to 0.98)	98.0¶
Major thrombotic event	13/1180 (1.1)	22/1046 (2.1)			
Death in hospital	86/1180 (7.3)	86/1046 (8.2)			
Major bleeding	22/1180 (1.9)	9/1047 (0.9)	0.7 (-0.1 to 2.3)	1.80 (0.90 to 3.74)	95.5††

Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with Covid-19

The ATTACC, ACTIV-4a, and REMAP-CAP Investigators*

Therapeutic Anticoagulation with Heparin in Critically Ill Patients with Covid-19

The REMAP-CAP, ACTIV-4a, and ATTACC Investigators*

Table 2. Primary and Secondary Outcomes.

Outcome	Therapeutic-Dose Anticoagulation (N=536)	Usual-Care Thromboprophylaxis (N=567)	Adjusted Difference in Risk (95% Credible Interval)	Adjusted Odds Ratio (95% Credible Interval)*	Probability of Superiority	Probability of Futility	Probability of Inferiority
	median	no. (IQR)	percentage points		%	%	%
Organ support–free days up to day 21†‡	1 (-1 to 16)	4 (-1 to 16)	_	0.83 (0.67 to 1.03)	5.0	99.9	95.0
	no. of patien	ts/total no. (%)					
Survival to hospital discharge‡	335/534 (62.7)	364/564 (64.5)	-4.1 (-10.7 to 2.4)	0.84 (0.64 to 1.11)	10.8	99.6	89.2
Major thrombotic events or death§	213/531 (40.1)	230/560 (41.1)	1.0 (-5.6 to 7.4)	1.04 (0.79 to 1.35)	40.3	_	59.7
Major thrombotic events¶	34/530 (6.4)	58/559 (10.4)	_	_	_	_	_
Death in hospital	199/534 (37.3)	200/564 (35.5)	_	_	_	_	_
Any thrombotic events or death§	217/531 (40.9)	232/560 (41.4)	1.5 (-4.9 to 8.0)	1.06 (0.81 to 1.38)	33.4	_	66.6
Any thrombotic events	38/530 (7.2)	62/559 (11.1)	_	_	_	_	_
Death in hospital	199/534 (37.3)	200/564 (35.5)	_	_	_	_	_
Major bleeding§	20/529 (3.8)	13/562 (2.3)	1.1 (-0.6 to 4.4)	1.48 (0.75 to 3.04)	12.8	_	87.2

Therapeutic Anticoagulation with Heparin in Critically Ill Patients with Covid-19

The REMAP-CAP, ACTIV-4a, and ATTACC Investigators*

Efficacy and Safety of Therapeutic-Dose Heparin vs Standard Prophylactic or Intermediate-Dose Heparins for Thromboprophylaxis in High-risk Hospitalized Patients With COVID-19 The HEP-COVID Randomized Clinical Trial

Table 2. Clinical Outcomes During the 30-Day Postrandomization Phase

	No./total No. (%)			
Outcome	Therapeutic dose (n = 129)	Standard dose (n = 124)		P value ^a
Primary efficacy outcome				
VTE, ATE, or death	37/129 (28.7)	52/124 (41.9)	0.68 (0.49-0.96)	.03
Non-ICU stratum	14/84 (16.7)	31/86 (36.1)	0.46 (0.27-0.81)	.004
ICU stratum	23/45 (51.1)	21/38 (55.3)	0.92 (0.62-1.39)	.71
VTE + ATE	14/129 (10.9)	36/124 (29.0)	0.37 (0.21-0.66)	<.001
Death	25/129 (19.4)	31/124 (25.0)	0.78 (0.49-1.23)	.28
Secondary efficacy outcomes				
Primary efficacy outcome at day 14	30/129 (23.3)	45/124 (36.3)	0.64 (0.43-0.95)	.02
Progression to ARDS	11/127 (8.7)	6/121 (5.0)	1.75 (0.67-4.58)	.25
Rehospitalization	1/129 (0.8)	3/124 (2.4)	0.32 (0.03-3.04)	.36
Intubation	17/122 (13.9)	21/121 (17.4)	0.80 (0.45-1.45)	.46
ECMO	1/129 (0.8)	1/124 (0.8)	0.96 (0.06-15.20)	>.99
Nonfatal cardiac arrest	0	2/124 (1.6)	0.19 (0.01-3.97)	.24
Acute kidney injury ^b	17/129 (13.2)	12/124 (9.7)	1.36 (0.68-2.73)	.38
New-onset atrial fibrillation	4/129 (3.1)	5/124 (4.0)	0.77 (0.21-2.80)	.75
Principal safety outcome				
Major bleeding	6/129 (4.7)	2/124 (1.6)	2.88 (0.59-14.02)	.28
Non-ICU stratum	2/84 (2.4)	2/86 (2.3)	1.02 (0.15-7.10)	>.99
ICU stratum	4/45 (8.9)	0	7.62 (0.42-137.03)	.12

Jama Intern Med 08 October 2021

Abbreviations: ARDS, acute respiratory distress syndrome; ATE, arterial thromboembolism; ECMO, extracorporeal membrane oxygenation; ICU, intensive care unit; RR, relative risk; VTE, venous thromboembolism.

^a Modified intention-to-treat population (2-sided *P* value for superiority).

^b Acute kidney injury defined as (1) increase in serum creatinine by 0.3 mg/dL or greater within 48 hours,
(2) increase in serum creatinine by a factor of 1.5 times baseline or greater, or (3) decrease in urine volume to less than 0.5 mg/kg/h for 6 hours per Kidney Disease: Improving Global Outcomes standard definition.

Summary

Therapeutic v prophylactic dose heparin Effectiveness in patients with covid-19 admitted to hospital

Observed reduction in mortality and low risk of bleeding supports use of therapeutic heparin in moderately ill patients with covid-19 and increased D-dimer levels admitted to hospital

* Includes death, invasive or non-invasive mechanical ventilation, or ICU admission † As defined by the International Society on Thrombosis and Haemostasis

https://bit.ly/BMJc19hep

Sholzberg et al, RAPID RCT2BMJ Ocot 14, 2021

WHAT IS ALREADY KNOWN ON THIS TOPIC

RCT suggest that therapeutic heparin is beneficial in moderately ill COVID inpatients, but of no benefit and potential harm when provided to critically ill patients Given the disparate findings in these two patient populations, there is hesitancy to adopt therapeutic heparin as SoC

WHAT THIS STUDY ADDS

Use of therapeutic heparin in moderately ill patients and increased D-dimer levels was not associated with a significant reduction in the primary composite outcome of death, NiV-MV, or ICU admission

Although the difference was not significant, a noticeable reduction in mortality and low risk of bleeding was observed with therapeutic heparin

Spontaneous ilio-psoas haematomas (IPHs): a warning for COVID-19 inpatients

Angio-CT: Iliopsoas hematoma with small arterial intralesional blush

Angio-CT: delayed phase shows pooling (increased size of blush) of iv contrast media in same patient.

Prophylaxis vs Therapeutic dosage in COVID-19

- In non critical not VTE, full therapeutic doses if
 - 1. D-dimer > 2 or 4 UNV OR
 - 2. SIC Score >4 (plt, INR, SOFA score)
- In critical patients not VTE prophylaxys only

Steroids for Covid 19

JAMA Internal Medicine | Original Investigation

Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China

Table 1. Demographic Characteristics of Patients With CoronavirusDisease 2019 Pneumonia (continued)

Study population	No. (%)
Clinical outcomes	
ARDS	84 (41.8)
ICU admission	53 (26.4)
Death	44 (21.9)

Figure. Survival Curve in Patients With Acute Respiratory Distress Syndrome Who Did and Did Not Receive Methylprednisolone Treatment

Administration of methylprednisolone reduced the risk of death (hazard ratio, 0.38; 95% CI, 0.20-0.72; P = .003).

	All patients				Patients with ARDS			
Clinical characteristics	Without ARDS, No. (%) (n = 117)	With ARDS, No. (%) (n = 84)	Difference (95% CI)ª	P value ^b	Alive, No. (%) (n = 40)	Died, No. (%) (n = 44)	Difference (95% CI) ^a	P value ^b
Treatment in hospital								
Oxygen therapy ^c								
Nasal cannula	81 (69.2)	17 (20.2)	-49.0 (-62.0 to -36.0)		17 (42.5)	0	-42.5 (-60.2 to -24.8)	
NMV	0	61 (72.6)	72.6 (62.1 to 83.2)	< 001	23 (57.5)	38 (86.4)	28.9 (8.1 to 49.6)	< 001
IMV	0	5 (6.0)	6.0 (-0.1 to 12.0)	<.001	0	5 (11.4)	11.4 (-0.4 to 23.1)	<.001
IMV with ECMO	0	1(1.2)	1.2 (-2.2 to 4.5)		0	1 (2.3)	2.3 (-4.4 to 8.9)	
Methylprednisolone	12 (10.3)	50 (59.5)	49.3 (36.4 to 62.1)	<.001	27 (67.5)	23 (52.3)	-15.2 (-38.3 to 7.9)	.16
Antibiotic therapy	113 (96.6)	83 (98.8)	2.2 (-2.8 to 7.3)	.59	40 (100.0)	43 (97.7)	-2.3 (-8.9 to 4.4)	>.99
Antiviral therapy	106 (90.6)	64 (76.2)	-14.4 (-26.0 to -2.9)	.005	39 (97.5)	25 (56.8)	-40.7 (-58.5 to -22.9)	<.001

Wu et al JAMA 13.03.2020

Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report

The RECOVERY Collaborative Group*

Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report

The RECOVERY Collaborative Group*

Corticosteroids for COVID-19

LIVING GUIDANCE 2 SEPTEMBER 2020

Recommendations: The panel made two recommendations: a strong recommendation for systemic (i.e. intravenous or oral) corticosteroid therapy (e.g. 6 mg of dexamethasone orally or intravenously daily or 50 mg of hydrocortisone intravenously every 8 hours) for 7 to 10 days in patients with severe and critical COVID-19, and a conditional recommendation not to use corticosteroid therapy in patients with non-severe COVID-19.

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive Without Life Support in Adults With COVID-19 and Severe Hypoxemia The COVID STEROID 2 Randomized Trial

Table 2. Primary and Secondary Outcomes

Outcome ^a	12 mg of dexamethasone (n = 491)	6 mg of dexamethasone (n = 480)	Adjusted mean difference (95% CI) ^b	Adjusted relative risk (99% CI) ^b	P value
Primary outcome					
No. of days alive without life support at 28 d, median (IQR) ^c	22.0 (6.0 to 28.0)	20.5 (4.0 to 28.0)	1.3 (0 to 2.6)		.07 ^d
Single components of the composite primary outcome ^b					
No. of days alive without invasive mechanical ventilation at 28 d, median (IQR)	23.0 (7.0 to 28.0)	22.0 (5.0 to 28.0)			
No. of days alive without circulatory support at 28 d, median (IQR)	26.0 (13.0 to 28.0)	25.0 (9.0 to 28.0)			
No. of days alive without kidney replacement therapy at 28 d, median (IQR)	28.0 (18.0 to 28.0)	28.0 (13.8 to 28.0)			
Secondary analysis of the primary outcome					
No. of days alive without life support at 28 d ^e			1.2 (-0.1 to 2.4)		.06
Unadjusted analysis			1.3 (-0.1 to 2.7)		.07
Secondary outcomes					
No. of days alive without life support at 90 d, median (IQR)	(n = 489) 84.0 (9.3 to 90.0)	(n = 478) 80.0 (6.0 to 90.0)	4.4 (-1.6 to 10.4)		.15 ^r
No. of days alive out of the hospital at 90 d, median (IQR)	(n = 490) 61.5 (0 to 78.0)	(n = 478) 48.0 (0 to 76.0)	4.1 (-1.3 to 9.5)		.09
Mortality					
At 28 d, No. (%)	133 (27.1)	155 (32.3)	-4.5 (-11.5 to 2.3)9	0.86 (0.68 to 1.08)	.10 ^h
At 90 d, No./total (%)	157/490 (32.0)	180/478 (37.7)	-4.9 (-12.1 to 2.4)9	0.87 (0.70 to 1.07)	.09 ¹
≥1 serious adverse reactions, No./total (%) ^j	56/497 (11.3)	65/485 (13.4)	-2.2 (-7.3 to 3.1) ⁹	0.83 (0.54 to 1.29)	.27 ^k
New episodes of septic shock, No. (%)	42 (8.5)	50 (10.3)			
Invasive fungal infection, No. (%)	15 (3.0)	21 (4.3)			
Clinically important gastrointestinal bleeding, No. (%)	9 (1.8)	5 (1.0)			
Anaphylactic reaction to dexamethasone, No.	0	0			

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive Without Life Support in Adults With COVID-19 and Severe Hypoxemia The COVID STEROID 2 Randomized Trial

JAMA. 2021;326(18):1807-1817. doi:10.1001/jama.2021.18295 online October 21, 2021

Figure 2. Distributions of the Primary Outcome and Time to Death Curves to Day 90

	Days alive without life support dexamethasone dose, median	Days alive without life support by dexamethasone dose, median (IQR)			f 12 mg of dexamethasone	P value for
Subgroup	12 mg	6 mg	(95% CI) ^a	better	better	heterogene
Enrollment geograph	ic region					
Europe	22.0 (7.0 to 28.0) (n=298)	20.0 (4.0 to 28.0) (n=315)	1.8 (0.2 to 3.4)			67
India	28.0 (4.8 to 28.0) (n=187)	25.0 (5.0 to 28.0) (n = 182)	0.5 (-1.7 to 2.6)	-	-	.57
Age, y						
≥70	12.0 (3.0 to 28.0) (n=167)	8.0 (3.0 to 28.0) (n=167)	1.6 (-0.7 to 4.0)			
<70	26.0 (9.0 to 28.0) (n=318)	25.0 (5.0 to 28.0) (n = 330)	1.2 (-0.4 to 2.8)			.00
Chronic use of system	nic glucocorticoids at baseline					
Yes	22.0 (6.0 to 28.0) (n=16)	5.0 (0.8 to 8.0) (n=13)	8.4 (-5.9 to 22.7)			
No	22.0 (6.0 to 28.0) (n=469)	21.5 (4.0 to 28.0) (n=484)	1.0 (-0.3 to 2.3)		-	.53
Limitations in care ^b						
Yes	9.0 (3.3 to 28.0) (n=25)	6.0 (3.0 to 28.0) (n=30)	6.6 (0.1 to 13.1)			
No	22.0 (7.0 to 28.0) (n=460)	22.0 (5.0 to 28.0) (n=467)	1.2 (-0.1 to 2.5)		-	.11
Required invasive me	chanical ventilation					
Yes	9.0 (0 to 21.0) (n=99)	2.5 (0 to 15.0) (n=107)	2.4 (-0.2 to 5.0)			
No	28.0 (9.0 to 28.0) (n=386)	28.0 (6.0 to 28.0) (n = 390)	1.1 (-0.5 to 2.6)			.44
Prior use of IL-6 recep	ptor antagonists					
Yes	27.0 (9.5 to 28.0) (n=47)	28.0 (24.0 to 28.0) (n=52)	-1.4 (-5.3 to 2.4)		<u> </u>	50
No	22.0 (5.0 to 28.0) (n=438)	18.0 (4.0 to 28.0) (n=445)	1.7 (0.3 to 3.1)		-	-59
Prior use of dexameth	nasone before randomization, d					
0-2	22.0 (4.5 to 28.0) (n=355)	23.0 (5.0 to 28.0) (n=384)	1.6 (0.1 to 3.1)		-=-	
3-4	22.0 (6.8 to 28.0) (n=130)	19.0 (4.0 to 28.0) (n=113)	-0.4 (-3.4 to 2.7)		<u> </u>	.64
All patients	22.0 (6.0 to 28.0) (n=491)	20.5 (4.0 to 28.0) (n = 480)	1.3 (0 to 2.6)		-	

Figure 3. Median Days Alive Without Life Support and the Adjusted Mean Differences in the 7 Predefined Subgroups

Immunodulants for Covid 19

Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

(b)

Lancet May 2021

Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

Lancet May 2021

Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

* Log-rank O-E for RECOVERY, O-E from 2x2 tables for the other trials. RR is calculated by taking In RR to be (O-E)/V with Normal variance 1/V. Subtotals or totals of (O-E) and of V yield inverse-variance-weighted averages of the In RR values.

† For balance, controls in the 2:1 studies count twice in the control totals and subtotals.

Lancet May 2021

Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19 NEJM Dec 11, 2020

Baricitinib+RDV 288 276 213 133 91 64 41 31 25 22 20 20 17 12 5 Placebo+RDV 276 267 211 146 95 71 57 47 43 37 35 33 28 26 12

Baricitinib+RDV 103 102 100 88 73 60 47 40 36 29 25 23 22 19 10 Placebo+RDV 113 110 106 95 86 78 67 62 57 52 46 41 36 32 16 Dead

8

Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19

.

NEJM Dec 11, 2020

Table 2 A.C. Kalil, T.F. Pa	attersor	n, A.K. I	Mehta,	K.M.	Tomas	hek, C	R. Wo	olfe, V.	Ghaza	ryan,
Outcome	Ov	erall				Ordinal Sco	re at Baseline	•		
			4	L I	5			6		7
	Baricitinib (N=515)	Placebo (N=518)	Baricitinib (N=70)	Placebo (N=72)	Baricitinib (N=288)	Placebo (N = 276)	Baricitinib (N=103)	Placebo (N=113)	Baricitinib (N=54)	Placebo (N = 57)
Recovery										
No. of recoveries	433	406	67	69	262	243	82	73	22	21
Median time to recovery (95% CI) — days	7 (6–8)	8 (7–9)	5 (4-6)	4 (4–6)	5 (5–6)	6 (5–6)	10 (9–13)	18 (13–21)	NE (25–NE)	NE (26–NE)
Rate ratio (95% CI)†	1.16 (1.01–1	.32 [P=0.03])	0.88 (0.6	53–1.23)	1.17 (0.9	8–1.39)	1.51 (1	.10–2.08)	1.08 (0.5	9–1.97)
Mortality over first 14 days‡										
Hazard ratio (95% CI) for data through day 14	0.54 (0.	23–1.28)	N	E	0.73 (0.1	6-3.26)	0.21 (0	.02-1.80)	0.69 (0.1	9–2.44)
No. of deaths by day 14	8	15	0	0	3	4	1	5	4	6
Kaplan–Meier estimate of mortality by day 14 — % (95% CI)	1.6 (0.8–3.2)	3.0 (1.8–5.0)	0 (NE–NE)	0 (NE–NE)	1.1 (0.4–3.4)	1.5 (0.6–3.9)	1.0 (0.1–6.7)	4.6 (2.0–10.8)	7.6 (2.9–19.1)	11.3 (5.3–23.5)
Mortality over entire trial period‡										
Hazard ratio (95% CI)	0.65 (0.	39–1.09)	N	E	0.40 (0.1	4-1.14)	0.55 (0	.22-1.38)	1.00 (0.4	5–2.22)
No. of deaths by day 28	24	37	0	0	5	12	7	13	12	12
Kaplan–Meier estimate of mortality by day 28 — % (95% CI)	5.1 (3.5–7.6)	7.8 (5.7–10.6)	0 (NE–NE)	0 (NE–NE)	1.9 (0.8–4.4)	4.7 (2.7–8.1)	7.5 (3.6–15.2)	12.9 (7.7–21.3)	23.1 (13.8–37.1)	22.6 (13.5–36.4)
Ordinal score at day 15 (±2 days) — no. (%)∬										
1	177 (34.4)	165 (31.9)	33 (47.1)	44 (61.1	114 (39.6)	101 (36.6	27 (26.2)	17 (15.0)	3 (5.6)	3 (5.3)
2	177 (34.4)	163 (31.5)	25 (35.7)	20 (27.8	120 (41.7)	115 (41.7	30 (29.1)	24 (21.2)	2 (3.7)	4 (7.0)
3	8 (1.6)	3 (0.6)	5 (7.1)	2 (2.8)	2 (0.7)	1 (0.4	0	0	1 (1.9)	0
4	31 (6.0)	18 (3.5)	7 (10.0)	6 (8.3)	14 (4.9)	7 (2.5	7 (6.8)	3 (2.7)	3 (5.6)	2 (3.5)
5	43 (8.3)	50 (9.7)	0	0	18 (6.2)	27 (9.8	15 (14.6)	20 (17.7)	10 (18.5)	3 (5.3)
6	20 (3.9)	19 (3.7)	0	0	9 (3.1)	1 (0.4	7 (6.8)	16 (14.2)	4 (7.4)	2 (3.5)
7	48 (9.3)	83 (16.0)	0	0	8 (2.8)	19 (6.9	15 (14.6)	28 (24.8)	25 (46.3)	36 (63.2)
8	11 (2.1)	17 (3.3)	0	0	3 (1.0)	5 (1.8	2 (1.9)	5 (4.4)	6 (11.1)	7 (12.3)
Odds ratio (95% CI)	1.3 (1	.0–1.6)	0.6 (0.	3–1.1)	1.2 (0.9	9–1.6)	2.2 (1	.4–3.6)	1.7 (0.	8–3.4)

* Datients in both groups received BDV in addition to either baricitinih or placebo. Neither the Divelue nor any confidence intervals have not been adjusted for multiple comparisons

Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, nlaceho-controlled phase 3 trial ABSTRACT

Background: Baricitinib, an oral selective Janus kinase 1 and 2 inhibitor, improved outcomes in a previous randomized controlled trial of hospitalized adults with COVID-19, in combination with remdesivir.

Methods: In this phase 3, global, double-blind, randomized, placebo-controlled trial, 1525 hospitalized adults with COVID-19 receiving standard of care (SOC) were randomly assigned (1:1) to once-daily baricitinib 4-mg (N=764) or placebo (N=761) for up to 14 days. SOC included systemic corticosteroids in ~79% of participants (dexamethasone ~90%). The primary endpoint was the proportion who progressed to high-flow oxygen, non-invasive ventilation, invasive mechanical ventilation, or death by day 28. A key secondary endpoint was all-cause mortality by day 28.

Results: Overall, 27.8% of participants receiving baricitinib vs 30.5% receiving placebo progressed (primary endpoint, odds ratio 0.85, 95% CI 0.67-1.08; p=0.18). The 28-day all-cause mortality was 8.1% for baricitinib and 13.1% for placebo, corresponding to a 38.2% reduction in mortality (hazard ratio [HR] 0.57, 95% CI 0.41-0.78; nominal p=0.002); 1 additional death was prevented per 20 baricitinib-treated participants. Reduction in mortality was seen for all prespecified subgroups of baseline severity (most pronounced for participants on high-flow oxygen/non-invasive ventilation at baseline [17.5%, baricitinib vs 29.4%, placebo; HR 0.52, 95% CI 0.33-0.80; nominal p=0.007]). The frequency of adverse events, serious adverse events, serious infections, and venous thromboembolic events was similar between groups.

Conclusions: While reduction of disease progression did not achieve statistical significance, treatment with baricitinib in addition to SOC (predominantly dexamethasone) significantly reduced mortality with a similar safety profile between groups of hospitalized COVID-19

Table 2. Primary and key secondary outcomes in the intent-to-treat population

	Placebo + SOC		Baricitinib 4-mg + SOC	
	(N=761)		(N=764)	
			Comparison with	Nominal p
Outcome			placebo (95% CI)	value*
Primary outcome				
Progressed to high-flow oxygen, non-				
invasive ventilation oxygen, invasive				
mechanical ventilation†, or death by				
Day 28, (%)‡§				
Population 1¶**	30.5	27.8	0.85 (0.67 to 1.08)	0.18
Population 2††‡‡	27.1	28.9	1.12 (0.58 to 2.16)	0.73
Key secondary outcomes				
All-cause mortality, n (%)¶¶	100 (13.1)	62 (8.1)	0.57 (0.41 to 0.78)	0.002

Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial

Baricitinib plus Standard of Care for Hospitalised Adults with COVID-19 on Invasive

Mechanical Ventilation or Extracorporeal Membrane Oxygenation: Results of a

Randomised, Placebo-Controlled Trial.

Table 2: Overview of efficacy outcomes in the intent-to-treat population by day 28

	Placebo + SOC	Baricitinib + SOC	Comparison with	p value*
	(N= 50)	(N= 51)	placebo (95% CI)	
All-cause mortality				
n (%)‡	29 (58·0)	20 (39·2)	0.54 (0.31, 0.96)	0.030
KM Estimates (95% CI)	59.0 (41.1, 77.7)	40.6 (25.8, 59.7)		
Time to mortality, days; median	17·0 (11·0, NA)	NA (24·0, NA)		
(95% CI)				
VFDs (days) †	5.5 (8.4)	8·1 (10·2)	2.36 (-1.38, 6.09)	0.21
Likelihood of overall improvement on				
the NIAID-OS				
Day 4			14·37 (1·79, 115·65)	0.012
Day 7			2.87 (1.12, 7.36)	0.028
Day 10			2.08 (0.96, 4.49)	0.062
Day 14			1.97 (0.95, 4.09)	0.068
Day 21			2.16 (1.04, 4.49)	0.040
Day 28			1.82 (0.87, 3.81)	0·11

≥1-point improvement on NIAID-OS

Submitted Lancet Resp Med 10-21

Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial

Background In a previous open-label trial early anakinra treatment guided by elevated soluble urokinase plasminogen activator receptor (suPAR) prevented progression of COVID-19 pneumonia into respiratory failure.

Methods In the SAVE-MORE multicenter trial, hospitalized patients with moderate and severe COVID-19 pneumonia and plasma suPAR 6 ng/ml or more and receiving standard-of-care (SoC) were 1:2 randomized to subcutaneous treatment with placebo or 100mg anakinra once daily for 10 days. The primary endpoint was the 11-point World Health Organization ordinal Clinical Performance Scale (WHO-CPS) by day 28. The changes of the WHO-CPS and of the sequential organ failure assessment (SOFA) score were the main secondary endpoints. The trial was designed following advice by the COVID-ETF of the European Medicines Agency.

Results Anakinra-treated patients were allocated to significantly lower strata of disease severity by day 28 (adjusted odds ratio-OR 0.36; 95%CI 0.26-0.50; P<0.0001). Significantly lower disposition into severe disease or death (6 or more points of WHO-CPS) was found (OR: 0.46; P: 0.01). The median absolute changes of WHO-CPS in the placebo and anakinra groups from baseline was -3 and -4 at day 28 (OR 0.40; P<0.0001); and -2 and -3 at day 14 (OR 0.63; P: 0.003); the absolute change of SOFA score was 0 and -1 (OR 0.63; P: 0.004). Hospital stay was shorter.

Conclusions Early start of anakinra treatment guided by suPAR is leading to 64% global improvement in moderate and severe COVID-19 pneumonia.

(Sponsored by the Hellenic Institute for the Study of Sepsis ClinicalTrials.gov identifier, NCT04680949) Consider adding the mortality benefit and the shorter ICU stay.

Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial

Criteri di inclusione:

- Pazienti adulti
- Diagnosi di infezione da SARS-CoV-2
- Polmonite (Rx o TC)
- Indicazione a ospedalizzazione
- suPAR<u>></u>6

Criteri di esclusione:

- P/F < 150
- Bisogno di NIV o VM
- Neutropenia
- Neoplasia stadio IV
- Malattia renale terminale
- Insufficienza epatica grave
- Immunodeficienze
- Terapia cronica con corticosteroidi
- Uso di anticitochine nell'ultimo mese

nature

PRIMARY ENDPOINT: distribution of the WHO-CPS scores at day 28 (primary outcome) of patients allocated to treatment with placebo and to treatment with anakinra

50.4% (204/405) of patients receiving anakinra had fully recovered with no viral RNA detected on day 28 compared to 26.5% (50/189) of patients receiving placebo, and 3.2% (13/405) and 6.9% (13/189) of patients in the anakinra and placebo arms, respectively, died.
PRIMARY ENDPOINT: univariate and multivariate ordinal regression analysis of the WHO-CPS scores at day 28

D							
Variable	Univaria	te analysis		Multivariate analysis			
	OR	95% Cl	<i>P</i> value	OR	95% CI	<i>P</i> value	
Group of treatment (Anakinra vs placebo)	0.36	0.26–0.49	<0.0001	0.36	0.26–0.50	<0.0001	
Intake of dexamethasone (Yes/No)	1.90	1.28–2.83	0.002	1.49	0.59–3.80	0.395	
Severe COVID-19 by WHO (Yes/No)	1.95	1.31–2.90	0.001	1.29	0.51–3.27	0.582	
BMI >30 kg m ⁻² (Yes/No)	1.27	0.87–1.61	0.267	1.10	0.81–1.50	0.530	
Country (Italy vs Greece)	1.18	0.74–1.88	0.482	1.25	0.77–2.03	0.350	

Covariates entered in the multivariate model were those used for stratified randomization according to advice received from the COVID-ETF (disease severity, intake of dexamethasone, body mass index (BMI) and country) and the treatment with anakinra was the only independent variable associated with the primary outcome.

PRIMARY ENDPOINT: Survival analysis of enrolled patients at day 28 (univariate Cox regression analysis)

- Attenuation of the early hyperinflammatory phase is already managed in other IDs: TB and crypto meningitis
- Attenuation of the hyperinflammatory phase of COVID-19 could protect COVID-19 patients by preventing clinical progression and death
- Anti-Jak and anti IL-6 have a role as immune suppressant drugs
- suPAR can represent an innovative early marker of disimmune regolation, personalizing treatment approach, because early increase of suPAR is indicative of excess release of DAMPs, leading to pro-inflammatory phenomena
- Early start of **anakinra** treatment guided by **suPAR** is leading to 64% global improvement in moderate and severe COVID-19 pneumonia
- The proportion of patients who fully recovered exceeded 50% and the number of patients who remained with severe disease was reduced by 54%.
- Relative decrease of mortality was 55% and reached 80% for patients likely having cytokine storm.

Terapia con immunomodulanti secondo indicazioni AIFA update del 28.09.21

		Indicazioni	dosaggio	Controindicazioni
Tocilizumab	anti IL-6	Soggetti adulti ospedalizzati con COVID-19 grave e/o con livelli elevati	8 mg/kg ev in 60min	- Infezioni attive in atto (diverse da
		degli indici di infiammazione sistemica.		COVID-19) che potrebbero
		• ricoverati in terapia intensiva da < di 24/48 h in ventilazione		peggiorare con l'utilizzo di
		meccanica o ossigeno ad alti flussi;		tocilizumab (vedi quantiferon e PCT)
		oppure	Seconda dose dopo	- Storia di ulcerazione intestinale o
		 recentemente ospedalizzati con fabbisogno di O2 in rapido 	almeno 8 ore se non	diverticolite
		aumento in ventilazione meccanica NON invasiva o ossigeno ad	migliora	- Epatopatia attiva e compromissione
		alti flussi + elevati indici di flogosi (PCR ≥7.5 mg/dL).		epatica
		 rapida progressione clinica dopo 24/48 h di desametasone, o altri 	(max 800 mg ad infusione)	- Trattamento con altri inibitori delle
		cortisonici. Fabbisogno di ossigeno in rapido aumento, pur senza		interleuchine o con altri JAK-inibitori
		necessità di ventilazione non invasiva o ossigeno ad alti flussi, e		
		con elevati livelli di indici di flogosi (CRP≥7,5 mg/dL).		
Baricitinib	Anti	Pazienti recentemente ospedalizzati con fabbisogno di ossigeno in rapido	4 mg per o.s./die per 14	- Neutropenia e infezioni gravi
	JAK1/JAK2	aumento (condizioni cliniche rapidamente ingravescenti) che richiedono	giorni (o fino	- Eventi epatici
		ventilazione meccanica NON invasiva o ossigeno ad alti flussi in	a dimissione	- Diverticolite e di perforazione
		presenza di elevati livelli di indici di flogosi (PCR ≥7.5 mg/dL).	dall'ospedale per	gastrointestinale
			risoluzione clinica, se	 Tromboembolismo venoso
			antecedente)	(Usato con attenzione nei pazienti con
				fattori di rischio per TVP/EP. Se
		Utilizzo off label in pazienti in ventilazione meccanica invasiva o ECMO*		compaiono manifestazioni cliniche di
			eGFR 30-<60: 2 mg PO QD	TVP/EP deve essere interrotto).
			eGFR <30: non	- Trattamento con altri inibitori delle
			somministrare	interleuchine o con altri JAK-inibitori
Anakinra	anti IL 1	Soggetti adulti ospedalizzati con polmonite da COVID-19	100 mg/die per 10 giorni	- Neutropenia e infezioni gravi
		moderata/severa (con pO2/FiO2>150, e NON sottoposti a CPAP o	SC	- Eventi epatici
		ventilazione meccanica) e con $(suPAR) \ge 6ng/ml$.		- Trattamento con altri inibitori delle
				interleuchine o con altri JAK-inibitori
Sarilumab	Anti IL-6	si ritiene che sarilumab possa essere utilizzato in alternativa a	400 mg ev in 60 min	
		tocilizumab quando quest'ultimo non fosse disponibile		

* Baricitinib plus Standard of Care for Hospitalised Adults with COVID-19 on Invasive Mechanical Ventilation or Extracorporeal Membrane Oxygenation: Results of a Randomised, Placebo-Controlled Trial.

https://www.aifa.gov.it/-/aifa-rende-disponibili-i-medicinali-anakinra-baricitinib-e-sarilumab-per-il-trattamento-del-covid-19

Take home message

• Strict monitoring of peripheral oxygen saturation is mandatory at home

There is now evidence-based clinical management of COVID-19 patients

- Non-pharmacological based management
 - HCWs patient empathy
 - **Pronation** is indicated in all patients apart if mechanically ventilated or not
 - correct O2 therapy in all health care settings to maintain a PaO2>95% with all available and feasible medical devices starting form Venturi mask, to CPaP, NIV or OTV;

Pharmacological based management

- MoAbs and other oral antiviral drugs in early phase of infection in at risk outpatients,
- MoAbs permitted use in persistent COVID patients, and in-patients
- early Remdesevir use as antiviral in case of pneumonia,
- LMWH for prophylaxis/treatment in all hospitalized patients,
- Steroids is a save life drug but only in case of oxygen support,
- Immunemodulant drugs (tocilizumab/sarilumab, baricitinib & anakinra according to EMA/AIFA assessment)